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Asymptotic vd~es of the upper critical loads are determined for local buckling in 
the zone of absence of regularity of thin elastic piecewise-convex, shallow, non- 

symmetric and no~ha~~ow shells of revolution subjected to external disGont~nu~us 

loads. Examples of shallow ellip~~dal and no~hallow spherical shells with a dis- 
continuer in the meridian along the parallel are considered for uniform external 

pressure, and subject to a load lumped along the parallel in the case of a smooth 
surface. 

An asymptotic method using the presence of the natural small parameter of rela- 

tive thin-walledness in the shell theory equations is applied. The asymptotic val- 
ues of the mentioned critical loads are determined as the least branchpoints of the 

nonlinear equations of the internal edge effect occuring because of absence of sm- 

oothness of the shell middle surface and the external load, by using an electronic 

computer, 

1, F~~rn~l~ti~n of the problem, A nonl~ear variant of the theory 
of medium bending of an elastic shallow shell with a piecewise-convex middle surface 

subjected to a transverse load is considered fl] : 

t9RZW - I211 -- z, Fl = Q, E~A~.F -+ ‘iz Iw, WI - fz, zd = 0 (la ‘I 

All the quantities in (1.1) are dimensionless and connected with the dimensional rela- 
tionships presented in [2]. Here z is the piecewise-convex middle surface with ab- 

sence of regularity along a horizontal fine rl. it is assumed that the shell occupies 

a finite simply-connected domain D with the boundary 1‘ in planform. Here z1 

denotes the strictly convex part of the surface Z. bounded by the curve I’a and 5 
denotes a strictly convex surface one of whose edges coincides with rr and the other 

with the shell boundary r. Let us consider the curves r and rl to be sufficiently 

smooth, to have no common points. and (1.2) 

21 f4 = 2% fs) + 0, %fP (s) + z*tp (s), s E rx; 2, (s) --- 0, SE r i 
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The load function Q (x, y) is given in the form 

(1.3) 

where Qo cx> Y) is a sufficiently smooth function in the domain JJ + r, 

& (s) is a delta-function, and P (s) is the intensity of the concentrated load. 
Boundary conditions corresponding to a clamped or a moving hinge support of the shell 

edge aresatisfied on the contour r 

(1.4) 
I)u=??=w=w,=0, SEI? 

2) F = Fp = w = wpp + Y (w,, - xwp) = 0, s EZ I’ 

The solvability and differential properties of solutions of the boundary value problems 
(1. l)-( 1.4) have been obtained in [3], from which there follows, in particular, that 
the functions W and 8’ remain continuous together with their first and second deri- 

vatives in passing through rl (continuity of the angles of rotation, the stresses and the 

moments) 

It has been shown in [4-71 that the asymptotic values of the upper critical load for suf- 
ficiently thin smooth shells are determined by local buckling far from the edge (the 

principle ” l3” of Pogorelov) or by phenomena in the edge effect zone. Moreover, an 
abrupt change in the strain, moment, and force fields occurs also in the meighbor- 

hoodofF due to absence of smoothness of the middle surface and the load (internal 
edge effect phenomenon). This results in the fact that snapping of the shell can start 

in the neighbourhood of r1 for loads smaller than in the case of smooth surfaces and 
loads. 

2. Construction of the asymptotic. An asymptotic method [2,5-S] 
is developed here to determine the upper critical loads. 

Let us note that here, as in [2,S], it is assumed that the number of azimuthal waves 
does not grow too rapidly along the line r, as e --+ 0 . Limiting ourselves to the con- 
@onstruction of the principal terms, let us construct the asymptotic expansions of the so- 
lutions of problems f 1. l)-( 1.4) as EZ 3 0 in the form 

(2. f) 
w1 (x, y, E) - wol (5, y) + EGO (x, y, 4, FI (z, Y, 4 - Fox (~2 Y) 4- 

eH1 (5, y, 4 

w2 (? Y, 8) - wo2 (5, y) + & (x, Y, 8) + Ego (G z/t 4 

F2 f? $4, 8) - Faz (x, y) + &Hz (x, Y, 8) -i- & (5, Y, E) 

Here the subscript i = 1 if (X, Y, z> E 2x3 and i=2 if (5, Y, 2) 
E 2,. The functions WQir FQi correspond to the membrane form of shell equi- 
librium coincident with the initial surface and are determined to form the system (1.1) 
for E2=0 
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(2.2) 
woi = 0 [Zi, Foil == Y 

with boundary conditions corresponding to (1.4) 

1) [Fez, ,,,, - vJ’oz, ss + ~ovFo,, Jr = ~02 (4 = 0, 9 E r 
(2.3) 

2) Fez (s) = wo2 (s) = 0, s E r 

The functions of boundary-layer type go, hoare constructed in [2]. They are concen- 
trated in the neighborhood of the shell edge r and cancel the residuals in the satis- 
faction of the boundary conditions (1.4) for Wozr Fo2. Because of the strict con- 
vexity of the surfaces 21 and z, it follows that the equations in (2.2) are elliptic. 
It can then be shown that 

Fol = Fo2r Fo,,, # Fo2.~ 
(2.4) 

if P (s) f; 0 or 213 (4 f z20 (4. Comparing(l.5) and (2.4), we find 
that the solutions of problems (2.2), (2.3) have worse differential properties than the 

solutions of problems (l. l)-(1.4). The functions of boundary layer type GI,Hi can- 
cel the discontinuities in the derivatives, improving the differential properties in the 

solutions Weir J’oi, i. e., the functions woi + EGO, Foi -k &Hi have differ- 

ential properties satisfying conditions (1.5) in the neighborhood of ri . Therefore, ‘the 
internal boundary layer phenomenon holds [g-15]. However, in contrast to the papers 

mentioned, here bifurcation holds in the edge effect zone. 

The functions Gi, Hi are concentrated in the neighborhood of the line ri 

and are determined from the internal edge effect equations, To derive these equations, 

let us go over to the local coordinates (p, v) in the neighborhood, and by using (2.1) 

let us carry out a construction [2] related to stretching the boundary layer on both sides 

of rl. Consequently, we obtain a system to determine Gi, Hi (i = 1, 2) which 

with the aid of the change of variables (X (s} is the curvature of the contour Pi) 

(2.5) 
LWi ($) 

at, 
= (_ l)iai, !Yi!$L = (-qpi, tl = 4 > 0 

Qi = 2fici-1, pi _= ti (xc~)"', 3~ > 0 

Ci = --3c-l (zi, xxPy2 + zi,,uP.? - 2zi,xyPxP1,) 
fi = --~.-l (Fot,as~t,’ + Foi,yuPx2 - 2Foi,xyPxPu) 

reduces to a system of nonlinear ordinary differential equations 
(2.6) 
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Substituting (2.1) into (1.5), taking account of (2.4), and again applying stretching 
of the boundary layer, we obtain the conjugate conditions at Tl = 2, = 0 
for the system (2.6) [S] : 

(2.V 
1”. a, (0) - ~2 (0) = J’ow (0) - J’a,P (0) 

Moreover, the conditions 

Ui (m) = /3i (m) = 0 (i = 1.2) (2.8) 

result from the requirement that the boundary layer functions decrease at infinity. 

Therefore, for arbitrarily given 2 and Q satisfying conditions (1.2) and (1.4), 
the solution of the equations for the principal term in the internal edge effect zone re- 
duces to the identical system (2.6)-(2.8) in which the dependence of the critical lo- 
ad on the shape of the middle surface and the loading method is taken into account 

by the parameters ci, Qi. It is interesting that the system (2.6)-(2.8) agrees with 
the internal edge effect system for a shallow shell of revolution with a piecewise- 
smooth meridian. 

Furthermore, let US introduce the quantity 

0 = max, Q2 = max, (2f,c,-*), s E I’1 (2.9) 

as the loading parameter. 
According to [5], the asymptotic value of the upper critical load for local buckling 

in the neighborhood of r1 is determined by the least branchpoint b* of the prob- 
lem (2.6)-(2.8). Let us seek the solution of the problem (2.6)-(2.8) in the form 

rk = - ak - ibk, pk = - ah_ + ibk, 

bk(+++r 

ak= (+_+_y”, 

All the cons&ctions are evidently valid for Qk < 4. 

Substituting (2.10) into (2.6) and collecting terms in idenitcal powers of zkfk,Yk, 

we determine the coefficients #An. Then substituting (2.10) into (2.7), we obtain 
a system of nonlinear algebraic equations to determine &k, YOk 
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2 (mr2 + np,) y.$&r$y&] = 0 

G, (yc2’) = 0, G2 (yC2’) =1 0 
We use the method elucidated in [S] to solve the system (2.1 l), (2.12) on an electronic 

computer. The condition that its Jacobian vanishes is used to determine the branch poi- 

nts of the system (2.11). The computations are checked by using the first integrals of the 

system (2.6). 

Passing to dimensional variables, we obtain a formula to determine the asymntotic val- 
ues of the critical load for local buckling in the neighborhood of the line rL 

(2.12) 

When Fol,$$ = Fo2,,, = 0 
two parameters c,Ic,, QlIQ2. 

for S E rl, the quantity o* depends only on the 

3. Ex~~p~6~ for rballow rhsllr. 1”. Ellipsoidal sherl with pi- 
ecewise-convex surface subjected to a uniform external load for 

a mobile hinge-supported edge. The equations of the shell middle surfaces 

and the contours r and I’* are given in the form 

(3.1) 
2% = M - l/s &x2 + bye), za = 1 - “/Qk,x2 + k,ya), z& = 0 

1 i 
sin(p, X,=hX, Y,=hY, ki >O 

There follows from the condition z1 (r,) = a2 (r,) = 0 that 
(3.2) 

& = h+k, (iM - 1 + k2), b = li-zk, (M - 1 + 2.a) 

The functions F,,, F,, are determined from (2.2) and we have the form 

i 

!i,h” (3.3) 

F,,= & l--h”+-, - -& \cx2 + W) 

E, I;; -& (2 - k,r’ - h-,!12) 

By using (3.1)-(3.3), we obtain from (2.5) 
C c 0 I r; -I _~._ - (I (3.4) 
CL A, It, ' QI =$, QFG' 

I& 01% P 
-I; 1 

QPI- Qsz 
m,p p=o== 2 

The asymptotic values of the critical load for local buckling in the neighborhood of the 
line PI in dimensional variables have the form 
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(3.5) 

It follows from (3.4) that For,ss = POW = 0 for s E I-1, Q1 / Qa = @a / 0, 
and the quantity o* depends only on the parameter % / ca. Certain values of os = 

o* (cl /ca) are presented below. For c,/ cs equal to 1.005, 1.004, 1.094, 1.122, 

1.316, 1.438, 1,669 the quantities u* equal, respectively, 3.968, 3.734, 3.449, 
3.303, 2.562, 2.248, 1.327. 

2’. Ellipsoidal shell with a smooth surface subjected to a 

load of intensity P concentrated along the contour I?, for a 

movable hinge-supported shell edge. Theequations for r and I’, 

are written in (3.1) and the equations for the middle surface and the load have the 
form 

z= 1 - IIs &x2 + k,Y2), q = PS (s), 8 E I?1 (3*6) 

The functions F,,, are determined from the problem (2.2) and 2) from (2.3) and (2.4) 

[z, 8’,1] G - k,Foi,vp - k$,i,, = Po (8)~ E‘OZ IF = 0 (3* 7, 

It can be shown that 

I;,, = 2A In-h, Jw” + by2 (3.3) 
.F, = A In 

2 9 QI=% Q,=g 

A = .Pk r/Z max (k,, k,) -$$ 
12' 

12 = 1 - min k, 
k, ' 

k2 
4 

Here E (I) is the complete normal Legendre elliptic integral of the second hind [16]. 

The asymptotic value of the critical load in dimensional variables has the form 

3”. Ellipsoidal shell with piecewise-convex surface clam- 

ped along the edge under a uniform external load. Inthiscase the 

middle surface and the equations of the contours i” and I’1 are given by (3.1). The 

functions F,i are determined from (2.2) under boundary condition 1) from (2.3) 

and (2.4) and have the form 

F,, = cg + q([Ka (k,* - ks2) + klJxz f [k, - Kb (k12 - ka2)J ~;:02)(tzk, + 
bkdl-l 

Po2=---ql"i (k2+vh-d&@ +k& .l fAx+By+D, 

K = (.$2 + kz” +- 2vk,k,)-1 
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The values of the coefficients A, B, D, co are not essential. The coefficients ci, 

Qi in the system (2.6) are determined from (3.10) by using (2.5) and formulas (2. 

6) from [Z]. It follows from (3. IO) that Foitss f 0 for s (5 Tl. The asymptot- 
ic value of the critical load p in dimensional variables has the form 

The quantity o* is determined as the least branchpoint of the problem (2.6)-(2.8) 

for each fixed cp 

4. Thin orthotropic non-shallow elastic shell of revolution. 
Let us apply the asymptotic method to determine the critical loads for the Reissner equ- 

ations [17, 181 of axisymmetric deformations of thin non-shallow shells of revolution 
with piecew~e-srn~~ meridian 

(4.1) 

Oi~a [ri (@ - 
{ 

cpi)‘f’ - F cos Qi (sin @fii - sin rp;) + yigpi’ (cos CDi - 
2 

sin @. 

@i” T-i 
Z + vi@:) (‘I’$ sin (Pi - Ti cos CDi) -f- 

Wih CoS cfti + qi sin cPi) 
I 

All the quantiti~ in (4.1) 

by means of the formulas 

Vi = Vi@, rOi = ria, 

Z1 (0) = Za (0) = 0 

are dimensionless and related to the dimensional quantities 
(4.2) 

(Yl%P~ yis = 12 (1 - v~vviS), pi’ = eie -: ?.% 
Ei, Vi8 

Z& = Zia, rr (0) = rz (01, 
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Here z0i (S), roi (S) are parametric equations of the middle surface, where 
S is fhe arclength of the meridian measured from the discontinuity point s -= 

O);i=l for Q\(S<O and i = 2 for 0 < s\<ss; E&l, y,, ve 
are the Young’s moduli and Poisson’s ratios, respectively, in the meridian and circumf- 

erential directions; Qr is the characteristic dimension, and h is the shell thickness; 

e2 is the relative thin-walledness parameter, and ps is the coefficient of ortho- 

tropy. The remaining notation is analogous to that taken in [6,18,19]. 
It is assumed that the shell middle surface is sufficiently smooth and strictly convex in 

the intervals s,,(s<O and o<s\<s, while the load has the form 

(4.3) 

P (0 (4, 4 -- PO (@ (4, 4 + p&(s), q (@ (s), s) = 

40 (0 (47 4 + q16 (4 

The bending moment, stress, and horizontal displacement remain continuous at the 
discontinuity point 0 = s and the angle between the shell elements does not ch- 

ange during deformation, i.e. , 

(4.4) 

o&f, (0) = ‘T2M2 (O), Yl (0) = y2 (0) 

p1u1 (0) = P2U2 (OL @I (0) - ‘pl (0) = 02 (0) - (p2 (0) 

Finally, boundary conditions corresponding to the method of fixing the shell edge [6] 

should be given for s = s1 and s = s, . 

In the case of a closed shell we have 

Di (si) = yi (si) =1 (pi (ai) = fi (ai) = 0, i = 1, 2 (4* 5, 

Limiting ourselves to the construction of smooth terms of the asymptotic, we construct 

the solution of the problem (4.1)-(4.4) as 

@i (S, E) - @%o (S) + Gio (ti) + g$’ (+) + (4* 6, 

g:;)(F) , t1 = - $>o 

Ypi (S, &) - Y’iO (S) + Hi0 (ti) + hii’ (y ) + 

SST - s 
hl+-), ts = $>o 

The functions @iO (4, Yyio (S) are solutions of (4.1) to the accuracy of qu- 
antities of e2 order and correspond to the membrane stress mode of equilibrium. 
They are determined from (4.1) for e = 0 and are 

@iO (s) = Cpi (S), ‘Pi (O) # ($2 (0)~ Ylo (0) # Y20 (0) (4g7) 

‘yio (S) = - ctg vi (S) S ri (E) qi (cpi (E) I WE, i=l, 2 

% 
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Therefore,the internal edge effect phenomenon holds and the boundary layer functions 
Gio (ti), Rio (ti) concentrated in the neighborhood of the parallel s = 0, 

cancels tne residuals in satisfying conditions (4.4) for Oi,. Y i ,,. 
The boundary layer functions g,s(‘), his(‘) (i, k = 1, 2) are lumped in the neigh- 
borhood of the shell edge (s = sr, s = as) and are constructed in [6,19] for di- 
fferent boundary condition cases. These functions should be omitted in the expansiond 

(4.6) upon compliance with the conditions (4.5). 
Let us deduce a system of internal edge effect equations on a half-bounded line to det- 

ermine Gio (ti), Hi0 (ti) By using the change of variables 

(4.8) 

‘Pi”= 1 (J’~o (0) 1, 0 < vi*< a, Gi, = Gi sign @i,,(O), Hi,,= “’ lfi 
Tq- 

ri (0) (‘s& )“2 

I 

“2 ti = zi 
&sinqi* ’ Ti, (0, X) = 

These equations always reduce to the same system 

(4.9) 
d"G 

Sin ‘Pi” dz,2 z+$-Q;*sinqi*sinGi---Hisin(Gi+cp,*)=O 
z 

d2H. 
sin ‘pi” d dziz + cos ‘pi* - cos (Gi + ‘pi*) = 0 

with conditions for Zi = 0, resulting from (4.4) and also conditions that Ci, Hi 

decrease at infinity 

dG, $4 g1 dz, + 9 = 0, Es [HI (0) - a Q1 sin 2v1*] - 
(4.10) 

S2 (0) + a Qz sin 2~43%” = rlpl 

dff, (0) dH, (0) 
E3 dz + dr, 

- = 0, gaGI (0) - Ga (0) = 0 

Gi (o~)l= IIi (w) = 0, i = I,2 

It is convenient to set 

V. = Qz#O, x = x(cp,*, (Pz*, L PI), 1=g 
(4.11) 

as the load parameter x. 
The method of solving the problem (4.9)-(4.10) is described in Sect. 2. 
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5, Examples for nonshallow shells. 1’ Closed isotropic sh- 
ell subjected to a hydrostatic load. In thiscase we have 

(5.1) 
qi = Q cos mi (s), pi = - Q sin (I-+ (s), ui = pi = fii = i 

91 * = b,, (pa’ = x - b,, COS (#lpi (S) = Ti’ (S), caa = Eq = I 

Qr? (0) Ti,(s)=-+Qr~(s), Qi =2.- sms bi 3 

Here Q is the intensity of the external pressure, 9, b, are angles the shell ele- 
ment makes with the horizontal axis at the discontinuity point of the meridian. Passing 

to dimensional variables, we obtain for the asymptotic value of the critical pressure Q* 

c 
I 

sin bl sin bz 

rr2 (0) x* tbl, b,) 

The values of q = ?c* sin b, (sin &,)-1 are here presented in Fig. 1. 

(5.2) 

I 
4 

__--- 

-. --- 

t 
1 

Fig. 1 Fig. 2 

Numbers l-4 refer to the values b, = 0.2, 0.5, 0.9, 1.571 respectively.In the case of 
a shell consisting of spherical segments of radius aR, and aRz we have 

%@)=bt+& rpz(s)=n-bb,+&, 
(5.3) 

ri,(s)=nRisincpi(s) 

ZI,, (s) = aR, [cos b, - cos cp, (s)J, zeo (s) = - aR, fcos b, - 
cos (pa (41, rlo @I = rzo @I 

We then deduce from (5.2) 

(5.4) 
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2”. Spher ical shell subjected to hydrostatic p 
and a force P distributed uniformly along a ring. 
shell middle surface and the load are given in the form 

ressure (2 
In this case the 

rio (s) = a sin [pi (s), Tpi (S) = b + a, oi = Pi = Pi = 1 

p = - Q sin @ (s) - P sin (D (0) 8 (s), q = Q cos a (s) + P cos CD (0) 8 (3) 

where b is the slope of the shell element to the abscissa axis at the point of applica- 
tion of the concentrated force P. We obtain from (4.7), (4.8) and the last equation in 

(4.1) 

T1, (s) = ---%/a Q sir9 tpl (s), y,, (s) = --Va Q sin Zcpl (a), a<0 
T*o (Sf = --?‘a Q sin2 qa (8) - P sin b, Y,, (s) = --?i4 Q sin 2~~ (s) -. 

P eos 6, s > 0 

YI, (01 # YE, (01, QI= 0, Qs = Q -t =/sin b, b=k0 

Solving the problem (4.1)-(4.4), we obtain neutral curves corresponding to those val- 
ues of gp and Q for which local buckling occurs in the neighborhood of the line of 
application of the concentrated load. The critical value of the vertical component of 
the stress function T* at the edge of a spherical shell subjected to a hydrostatic load 

is determined at buckling by the formula 

T* (b,) =-r --r/s u* (b,) sin2 6, 

where b, is the shell aperture angle, and U* is the value of the upper critical bu- 
ckling load which is determined by the method of fixing the edge and is presented in 
[6, 19, 201. In the case under consideration. the critical value of the vertical compo- 

nent of the stress function equals T,* (b, - b) and the neutral buckling curve is 

determined by the equation 

T’ (6,) = Tz* (6, - 6) Or 
2Psin 6 

Q = rJ* (h,) -‘T 
0 

The general neutral curves should consist of sections corresponding to local buckling 
near the edge and sections corresponding to local in the neighborhood of the line of ap- 

plication of the load P. For certain values of b and bo in the case of a mova- 

ble hinge fixed edge, these curves are presented in Fig. 2. It is seen from Fig. 2 that bu- 

ckling starts in the neighborhood of the line of application of the concentrated load for 

lJ0 = 1.38 and b = 0.5 (curve 1) with Q = 1.00 andP = 0.486, and 

near the edge with Q = 1.25 and P = 0.252 . Curve 2 corresponds to the case 

b = 0.2, b@ = 0.8. 

3”. Influence of edge fixing on the magnitude of the up- 

per critical load for a shell in the shape of spherical segments. 
Using the results in CS], let us write the asymptotic value of the upper critical load for 
local buckling near a shell edge in dimensional form 

A%” (6) h2 a* =-T---- (aH212 
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Here aRa is the radius of a segment whose edge is fixed, 6 is the segment aperture 

angle at the edge, o* (b) depends OR the method of fixing the edge and is presented 

in [7, 19, 201. By using (5.4) we write the ratio between the asymptotic values of the 
critical loads for local buckling near the shell edge and in the neighborhood of the bro- 

ken line 

Ql* (J* (b) o* (b) 
p=Qp,= -- 

x* sin b, (sin O.&-l - q 

Values of the quantity “1 = x* sin b, (sin b&-l are presented for convenience in 

Fig. 1. For P > f buckling starts in the neighborhood of the discontinuity line 

and for o < 1 - B in the neighborhood of the shell edge. Let us note that in the case 

of a clamped edge or fixed-hinge support CI* (b) = 4 (see [4, 203 and P > 1 always). 
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