STABLITY OF THIN NONS YMMETRIC PIECEWISE-CONVEX ELASTIC SHELLS

PMM Vol. 41, № 3, 1977, pp. 520-530
M.Iu. ZHUKOV and L. S. SRUBSHCHIK
(Rostov-on-Don)
(Received October 21, 1976)

Abstract

Asymptotic values of the upper critical loads are determined for local buckling in the zone of absence of regularity of thin elastic piecewise-convex, shallow, nonsymmetric and nonshallow shells of revolution subjected to external discontinuous loads. Examples of shallow ellipsoidal and nonshallow spherical shells with a discontinuity in the meridian along the parallel are considered for uniform external pressure, and subject to a load lumped along the parallel in the case of a smooth surface.

An asymptotic method using the presence of the natural small parameter of relative thin-walledness in the shell theory equations is applied. The asymptotic values of the mentioned critical loads are determined as the least branchpoints of the nonlinear equations of the internal edge effect occuring because of absence of smoothness of the shell middle surface and the external load, by using an electronic computer.

1. Formulation of the problem. A nonlinear variant of the theory

 of medium bending of an elastic shallow shell with a piecewise-convex middle surface subjected to a transverse load is considered [1]:$$
\begin{align*}
& \varepsilon^{2} \Delta^{2} w-[w-z, F]=q, \varepsilon^{2} \Delta^{2} F+1 / 2[w, w]-[z, w]=0 \tag{1.1}\\
& \varepsilon^{2} F_{x x}=\frac{1}{1-v^{2}}\left[v_{y}+z_{y y} w+\frac{1}{2} w_{y}^{2}+v\left(u_{x}+z_{x x} w+\frac{1}{2} w_{x}^{2}\right)\right] \\
& \varepsilon^{2} F_{y y}=\frac{1}{1-v^{2}}\left[u_{x}+z_{x x} w+\frac{1}{2} w_{x}^{2}+v\left(v_{y}+z_{y y} w+\frac{1}{2} w_{y}^{2}\right)\right] \\
& \varepsilon^{2} F_{x y}=-\frac{1}{2(1+v)}\left[u_{y}+v_{x}+2 z_{x y} w+w_{x} w_{y}\right] \\
& \Delta w=w_{x x}+w_{y y},\left[F_{,} w\right]=F_{x x} w_{y y}+F_{y y} w_{x x}-2 F_{x y} w_{x y}
\end{align*}
$$

All the quantities in (1.1) are dimensionless and connected with the dimensional relationships presented in [2]. Here z is the piecewise-convex middle surface with absence of regularity along a horizontal line Γ_{1}. It is assumed that the shell occupies a finite simply-connected domain D with the boundary Γ in planform. Here z_{1} denotes the strictly convex part of the surface z bounded by the curve Γ_{1} and z_{2} denotes a strictly convex surface one of whose edges coincides with Γ_{1} and the other with the shell boundary Γ. Let us consider the curves Γ and Γ_{1} to be sufficiently smooth, to have no common points, and

$$
\begin{equation*}
z_{1}(s)-z_{2}(s) \neq 0, \quad z_{1 p}(s) \neq z_{2 p}(s), \quad s \in \Gamma_{1} ; \quad z_{2}(s)=0, \quad s \in \Gamma^{1} \tag{1.2}
\end{equation*}
$$

The load function $q(x, y)$ is given in the form

$$
\begin{equation*}
q(x, y)=q_{0}(x, y)+P(s) \delta(s), \quad s \in \Gamma_{1} \tag{1.3}
\end{equation*}
$$

where $q_{0}(x, y) \quad$ is a sufficiently smooth function in the domain $D+\Gamma$,
$\delta(s)$ is a delta-function, and $P(s)$ is the intensity of the concentrated load. Boundary conditions corresponding to a clamped or a moving hinge support of the shell edge are satisfied on the contour Γ

1) $u=v=w=w_{\rho}=0, \quad s \in \Gamma$
2) $F=F_{\rho}=w=w_{\rho \rho}+v\left(w_{s s}-x w_{\rho}\right)=0, \quad s \in \Gamma$

The solvability and differential properties of solutions of the boundary value problems (1.1)-(1.4) have been obtained in [3], from which there follows, in particular, that the functions w and F remain continuous together with their first and second derivatives in passing through Γ_{1} (continuity of the angles of rotation, the stresses and the moments)

$$
\begin{array}{ll}
w_{1}=w_{2}, & w_{1 \rho}=w_{2 \rho}, \tag{1.5}\\
F_{1}=F_{2}, \quad F_{1 \rho \rho}=w_{2 \rho \rho} \\
F_{2 \rho}, & F_{1 \rho \rho}=F_{2 \rho \rho},
\end{array} \quad s \in \Gamma_{1}, ~ l
$$

It has been shown in [4-7] that the asymptotic values of the upper critical load for sufficiently thin smooth shells are determined by local buckling far from the edge (the principle " B " of Pogorelov) or by phenomena in the edge effect zone. Moreover, an abrupt change in the strain, moment, and force fields occurs also in the neighborhood of Γ_{1} due to absence of smoothness of the middle surface and the load (internal edge effect phenomenon). This results in the fact that snapping of the shell can start in the neighbourhood of Γ_{1} for loads smaller than in the case of smooth surfaces and loads.
2. Construction of the asymptotic. An asymptotic method [2,5-8] is developed here to determine the upper critical loads.

Let us note that here, as in $[2,8]$, it is assumed that the number of azimuthal waves does not grow too rapidly along the line Γ_{1} as $\varepsilon \rightarrow 0$. Limiting ourselves to the conconstruction of the principal terms, let us construct the asymptotic expansions of the solutions of problems (1.1)-(1.4) as $\quad \varepsilon^{2} \rightarrow 0 \quad$ in the form

$$
\begin{aligned}
& w_{1}(x, y, \varepsilon) \sim w_{01}(x, y)+\varepsilon G_{1}(x, y, \varepsilon), \quad F_{1}(x, y, \varepsilon) \sim F_{01}(x, y)+ \\
& \quad \varepsilon H_{1}(x, y, \varepsilon) \\
& w_{2}(x, y, \varepsilon) \sim w_{02}(x, y)+\varepsilon G_{2}(x, y, \varepsilon)+\varepsilon g_{0}(x, y, \varepsilon) \\
& F_{2}(x, y, \varepsilon) \sim F_{02}(x, y)+\varepsilon H_{2}(x, y, \varepsilon)+\varepsilon h_{0}(x, y, \varepsilon)
\end{aligned}
$$

Here the subscript $i=1 \quad$ if $\quad(x, y, z) \in z_{1}, \quad$ and $\quad i=2 \quad$ if (x, y, z) $\in z_{2}$. The functions $w_{0 i}, F_{0 i}$ correspond to the membrane form of shell equilibrium coincident with the initial surface and are determined to form the system (1.1) for $\varepsilon^{2}=0$

$$
\begin{equation*}
w_{0 i}=0 \quad\left[z_{i}, F_{0 i}\right]=q \tag{2.2}
\end{equation*}
$$

with boundary conditions corresponding to (1.4)

1) $\left[F_{02, \rho \rho}-v F_{02, s s}+\chi_{0} v F_{02, \rho}\right]_{\Gamma}=w_{02}(s)=0, \quad s \in \Gamma$
2) $F_{02}(s)=w_{02}(s)=0, \quad s \in \Gamma$

The functions of boundary-layer type g_{0}, h_{0} are constructed in [2]. They are concentrated in the neighborhood of the shell edge Γ and cancel the residuals in the satisfaction of the boundary conditions (1.4) for w_{02}, F_{02}. Because of the strict convexity of the surfaces z_{1} and z_{2} it follows that the equations in (2.2) are elliptic. It can then be shown that

$$
\begin{equation*}
F_{01}=F_{02}, \quad F_{01, \rho} \neq F_{02, \rho} \tag{2.4}
\end{equation*}
$$

if $P(s) \neq 0 \quad$ or $\quad z_{19}(s) \neq z_{2}$, $(s) . \quad$ Comparing (1.5) and (2.4), we find that the solutions of problems (2.2), (2.3) have worse differential properties than the solutions of problems (1.1)-(1.4). The functions of boundary layer type G_{i}, H_{i} cancel the discontinuities in the derivatives, improving the differential properties in the solutions $w_{0 i}, F_{0 i}$, i. e., the functions $w_{0 i}+\varepsilon G_{i}, F_{0 i}+\varepsilon H_{i}$ have differential properties satisfying conditions (1.5) in the neighborhood of Γ_{1}. Therefore, the internal boundary layer phenomenon holds [9-15]. However, in contrast to the papers mentioned, here bifurcation holds in the edge effect zone.

The functions G_{i}, H_{i} are concentrated in the neighborhood of the line Γ_{1} and are determined from the internal edge effect equations. To derive these equations, let us go over to the local coordinates (ρ, φ) in the neighborhood, and by using (2.1) let us carry out a construction [2] related to stretching the boundary layer on both sides of Γ_{1}. Consequently, we obtain a system to determine $G_{i}, H_{i}(i=1,2)$ which with the aid of the change of variables $\left(\mu(s)\right.$ is the curvature of the contour $\left.\Gamma_{1}\right)$

$$
\begin{align*}
& \frac{\partial H_{i}\left(t_{i}\right)}{\partial t_{i}}=(-1)^{i} \alpha_{i}, \quad \frac{\partial G_{i}\left(t_{i}\right)}{\partial t_{i}}=(-1)^{i} \beta_{i}, \quad t_{1}=\frac{\rho}{\varepsilon}>0 \tag{2.5}\\
& t_{2}=-\frac{\rho}{\varepsilon}<0 \\
& Q_{i}=2 f_{i} c_{i}^{-1}, \quad \tau_{i}=t_{i}\left(x c_{i}\right)^{1 / 2}, \quad x>0 \\
& c_{i}=-\chi^{-1}\left(z_{i, x x} \rho_{y}^{2}+z_{i, y y} \rho_{x}^{2}-2 z_{i, x y} \rho_{x} \rho_{y}\right) \\
& f_{i}=-\chi^{-1}\left(F_{0 i, x x} \rho_{y}{ }^{2}+F_{0 i, y y} \rho_{x}^{2}-2 F_{0 i, x y} \rho_{x} \rho_{y}\right)
\end{align*}
$$

reduces to a system of nonlinear ordinary differential equations

$$
\begin{equation*}
c_{i} \frac{\partial^{2} \alpha_{i}}{\partial \tau_{i}{ }^{2}}+\frac{1}{2} \beta_{i}{ }^{2}+c_{i} \beta_{i}=0, \quad c_{i} \frac{\partial^{2} \beta_{i}}{\partial \tau_{i}{ }^{2}}+\frac{1}{2} Q_{i} c_{i} \beta_{i}-\alpha_{i} \beta_{i}-c_{i} \alpha_{i}=0 \tag{2.6}
\end{equation*}
$$

Substituting (2.1) into (1.5), taking account of (2.4), and again applying stretching of the boundary layer, we obtain the conjugate conditions at $\tau_{1}=\tau_{2}=0$ for the system (2.6) [8]:

$$
\begin{align*}
& 1^{\circ} . a_{1}(0)-\alpha_{2}(0)=F_{01, \rho}(0)-F_{02, \rho}(0) \tag{2.7}\\
& 2^{\circ} . \quad c_{1}^{1 / 2} \frac{\partial \alpha_{1}(0)}{\partial \tau_{1}}=-c_{2}^{1 / 2} \frac{\partial \alpha_{2}(0)}{\partial \tau_{2}} \\
& 3^{\circ} \cdot \beta_{1}(0)=\beta_{2}(0) \\
& 4^{\circ} . \quad c_{1}^{1 / 2} \frac{\partial \beta_{1}(0)}{\partial \tau_{1}}=-c_{2}^{1 / 2} \frac{\partial \beta_{2}(0)}{\partial \tau_{2}}
\end{align*}
$$

Moreover, the conditions

$$
\begin{equation*}
\alpha_{i}(\infty)=\beta_{i}(\infty)=0 \quad(i=1,2) \tag{2,8}
\end{equation*}
$$

result from the requirement that the boundary layer functions decrease at infinity. Therefore, for arbitrarily given z and q satisfying conditions (1.2) and (1.4), the solution of the equations for the principal term in the internal edge effect zone reduces to the identical system (2.6)-(2.8) in which the dependence of the critical 10ad on the shape of the middle surface and the loading method is taken into account by the parameters c_{i}, Q_{i}. It is interesting that the system (2.6)-(2.8) agrees with the internal edge effect system for a shallow shell of revolution with a piecewisesmooth meridian.
Furthermore, let us introduce the quantity

$$
\begin{equation*}
\sigma=\max _{s} Q_{2}=\max _{s}\left(2 f_{2} c_{2}^{-1}\right), \quad s \in \Gamma_{1} \tag{2.9}
\end{equation*}
$$

as the loading parameter.
According to [5], the asymptotic value of the upper critical load for local buckling in the neighborhood of Γ_{1} is determined by the least branchpoint σ^{*} of the problem (2.6)-(2.8). Let us seek the solution of the problem (2.6)-(2.8) in the form

$$
\begin{align*}
& \alpha_{k}\left(\tau_{k}\right)=\sum_{m+n \geqslant 1} \gamma_{k m n}^{(1)} x_{k}{ }^{m} y_{k}{ }^{n}, \quad \beta_{k}\left(\tau_{k}\right)=\sum_{m+n \geqslant 1} \gamma_{k m n}^{(2)} x_{k}{ }^{m} y_{k}{ }^{n} \tag{2.10}\\
& x_{k}=x_{0 k} \exp \left(-r_{k} \tau_{k}\right), \quad y_{k}=y_{0 k} \exp \left(-p_{k} \tau_{k}\right) \\
& r_{k}=-a_{k}-i b_{k}, \quad p_{k}=-a_{k}+i b_{k}, \quad a_{k}=\left(\frac{1}{2}-\frac{Q_{k}}{8}\right)^{1 / 2}, \\
& b_{k}\left(\frac{1}{2}+\frac{Q_{k}}{8}\right)^{1 / 2}
\end{align*}
$$

All the constructions are evidently valid for $Q_{k}<4$.
Substituting (2.10) into (2.6) and collecting terms in idenitcal powers of x_{k}, y_{h}, we determine the coefficients $\gamma_{k m n}^{(i)}$. Then substituting (2.10) into (2.7), we obtain a system of nonlinear algebraic equations to determine $x_{0 k}, y_{0 k}$

$$
\begin{align*}
& G_{1}\left(\gamma^{(1)}\right) \equiv \sum_{m+n \geqslant 1}\left(\gamma_{1 m n}^{(1)} x_{01}^{m} y_{01}^{n}-\gamma_{2 m n}^{(1)} x_{02}^{m} y_{02}^{n}\right)=\frac{1}{2}\left(Q_{1} c_{1}-Q_{2} c_{2}\right) \\
& G_{2}\left(\gamma^{(1)}\right) \equiv \sum_{m+n \geqslant 1}\left[c_{1}^{1 / 2}\left(m r_{1}+n p_{1}\right) \gamma_{1 m n}^{(1)} x_{01}^{m} y_{01}^{n}+\right. \tag{2.11}\\
& \left.\quad c_{2}^{1 / 2}\left(m r_{2}+n p_{2}\right) \gamma_{2 m n}^{(1)} x_{02}^{m} y_{02}^{n}\right]=0 \\
& G_{1}\left(\gamma^{(2)}\right)=0, \quad G_{2}\left(\gamma^{(2)}\right)=0
\end{align*}
$$

We use the method elucidated in [6] to solve the system (2.11), (2.12) on an electronic computer. The condition that its Jacobian vanishes is used to determine the branch points of the system (2.11). The computations are checked by using the first integrals of the system (2.6).
Passing to dimensional variables, we obtain a formula to determine the asymptotic values of the critical load for local buckling in the neighborhood of the line Γ_{1}

$$
\begin{equation*}
p^{*} \approx \frac{E}{\sqrt{12\left(1-v^{2}\right)}} \frac{h^{2}}{a^{2}} \sigma^{*}\left(c_{i}, Q_{i}\right) \tag{2.12}
\end{equation*}
$$

When $F_{01, s s}=F_{02, s s}=0 \quad$ for $s \in \Gamma_{1}$, the quantity σ^{*} depends only on the two parameters $c_{1} / c_{2}, Q_{1} / Q_{2}$.
3. Examples for hallow thelli. 1°. Ellipsoidal shell with pi-ecewise-convex surface subjccted to a uniform external load for a mobile hinge-supported edge. The equations of the shell middle surfaces and the contours Γ and Γ_{I} are given in the form

$$
\begin{align*}
& z_{1}=M-1 / 2\left(c x^{2}+b y^{2}\right), \quad z_{2}=1-1 / 2\left(k_{1} x^{2}+k_{2} y^{2}\right), \quad z_{2} \mid \Gamma=0 \tag{3.1}\\
& X=\left(\frac{2}{k_{1}}\right)^{1 / 2} \cos \varphi, \quad Y=\left(\frac{2}{k_{2}}\right)^{1 / 2} \sin \varphi, \quad X_{1}=\lambda X, \quad Y_{1}=\lambda Y, \quad k_{i}>0
\end{align*}
$$

There follows from the condition $z_{1}\left(\Gamma_{1}\right)=z_{2}\left(\Gamma_{1}\right)=0$ that

$$
\begin{equation*}
c=\lambda^{-2} k_{1}\left(M-1+\lambda^{2}\right), \quad b=\lambda^{-2} k_{2}\left(M-1+\lambda^{2}\right) \tag{3.2}
\end{equation*}
$$

The functions F_{01}, F_{02} are determined from (2.2) and we have the form

$$
\begin{align*}
& F_{01}=\frac{q}{2 k_{1} k_{2}}\left(1-\lambda^{2}+\frac{k_{1} \lambda^{2}}{c}\right)-\frac{q}{4 c b}\left(c x^{2}+b y^{2}\right) \tag{3.3}\\
& E_{\mathrm{V} 2}=\frac{q}{4 k_{1} k_{2}}\left(2-k_{1} x^{2}-k_{2} y^{2}\right)
\end{align*}
$$

By using (3.1)-(3.3), we obtain from (2.5)

$$
\begin{align*}
& \frac{c_{1}}{r_{2}}=\frac{c}{h_{1}}=\frac{b}{h_{2}}, \quad Q_{1}=\frac{q}{c b}, \quad Q_{2}=\frac{q}{k_{1} k_{2}}, \tag{3.4}\\
& {\left[F_{01, p}-F_{02, p}\right]_{p=0}=\frac{Q_{1} c_{1}-Q_{2} c_{2}}{2}}
\end{align*}
$$

The asymptotic values of the critical load for local buckling in the neighborhood of the line Γ_{1} in dimensional variables have the form

$$
\begin{equation*}
p^{*}=\frac{E \sigma^{*}}{\sqrt{12\left(1-v^{2}\right)}} \frac{h^{2}}{R_{1} R_{2}} \tag{3.5}
\end{equation*}
$$

It follows from (3.4) that $\quad F_{01, s s}=F_{02, s s}=0 \quad$ for $\quad s \in \Gamma_{1}, Q_{1} / Q_{2}=\left(c_{2} / c_{1}\right)^{2}$, and the quantity σ^{*} depends only on the parameter c_{1} / c_{2}. Certain values of $\sigma^{*}=$ $\sigma^{*}\left(c_{1} / c_{2}\right)$ are presented below. For c_{1} / c_{2} equal to $1.005,1.004,1.094,1.122$, $1.316,1.438,1.669$ the quantities σ^{*} equal, respectively, $3.968,3.734,3.449$, $3.303,2.562,2.248,1.827$.
2°. Ellipsoidal shell with a smooth surface subjected to a load of intensity P concentrated along the contour Γ_{1} for a movable hinge-supported shell edge. The equations for Γ and Γ_{1} are written in (3.1) and the equations for the middle surface and the load have the form

$$
\begin{equation*}
z=1-1 / 2 \quad\left(k_{1} x^{2}+k_{2} y^{2}\right), \quad q=P \delta(s), \quad s \in \Gamma_{1} \tag{3.6}
\end{equation*}
$$

The functions F_{01} are determined from the problem (2.2) and 2) from (2.3) and (2.4)

$$
\left[z, F_{01}\right] \equiv-k_{1} F_{0 i, y y}-k_{2} F_{0 i, x x}=p \delta(s),\left.\quad F_{0 z}\right|_{\Gamma}=0
$$

It can be shown that

$$
\begin{align*}
& F_{01}=2 A \ln \lambda, \quad F_{02}=A \ln \frac{k_{1} x^{2}+k_{2} y^{2}}{2}, \quad Q_{1}=0, \quad Q_{2}=\frac{2 A}{\lambda^{2}} \tag{3.8}\\
& A=P \lambda \sqrt{2 \max \left(k_{1}, k_{2}\right)} \frac{E(l)}{\pi k_{1} k_{2}}, \quad l^{2}=1-\min \left(\frac{k_{1}}{k_{2}}, \quad \frac{k_{2}}{k_{1}}\right)
\end{align*}
$$

Here $E(l)$ is the complete normal Legendre elliptic integral of the second kind [16]. The asymptotic value of the critical load in dimensional variables has the form

$$
p^{*}=\frac{1.309 E}{\sqrt{12\left(1-v^{2}\right)}}\left[\frac{a \lambda \pi}{2 \sqrt{2 \max \left(k_{1}, k_{2}\right)} E(l)}\right] \frac{h^{2}}{R^{2}}
$$

(3.9)
3°. Ellipsoidal shell with piecewise-convex surface clamped along the edge under a uniform external load. In this case the middle surface and the equations of the contours Γ and Γ_{1} are given by (3.1). The functions $\quad F_{0 i}$ are determined from (2.2) under boundary condition 1) from (2.3) and (2.4) and have the form

$$
\begin{aligned}
& F_{01}=c_{0}+q\left\{\left[K a\left(k_{1}^{2}-k_{2}^{2}\right)+k_{1}\right] x^{2}+\left[k_{2}-K b\left(k_{1}^{2}-k_{2}^{2}\right)\right] y^{2}\right\}\left[2 \left(a k_{2}+\right.\right. \\
& F_{02}=-q K\left\{\left(k_{2}+v k_{1}\right) \frac{x^{2}}{2}+\left(k_{1}+v k_{2}\right) \frac{y^{2}}{2}\right\}+A x+B y+D \\
& K=\left(k_{1}^{2}+k_{2}^{2}+2 v k_{1} k_{2}\right)^{-1}
\end{aligned}
$$

The values of the coefficients A, B, D, c_{0} are not essential. The coefficients c_{i},
Q_{i} in the system (2.6) are determined from (3.10) by using (2.5) and formulas (2. 6) from [2]. It follows from (3.10) that $F_{0 i, s s} \neq 0$ for $s \in \Gamma_{1}$. The asymptotic value of the critical load p in dimensional variables has the form

$$
p=\frac{E \sigma^{*}}{\sqrt{12\left(1-v^{2}\right)}} \frac{h^{2}}{R_{1} R_{2}}
$$

The quantity σ^{*} is determined as the least branchpoint of the problem (2.6)-(2.8) for each fixed φ
4. Thin orthotropic non-shallow elastic shell of revolution. Let us apply the asymptotic method to determine the critical loads for the Reissner equations [17, 18] of axisymmetric deformations of thin non-shallow shells of revolution with piecewise-smooth meridian

$$
\begin{align*}
& \sigma_{i} \varepsilon^{2}\left\{\left[r_{i}\left(\Phi_{i}-\varphi_{i}\right)^{\prime}\right]^{\prime}-\frac{\beta_{i}^{2}}{r_{i}} \cos \Phi_{i}\left(\sin \Phi_{i}-\sin \varphi_{i}\right)+v_{i} \varphi_{i}^{\prime}\left(\cos \Phi_{i}-\right.\right. \tag{4.1}\\
& \left.\left.\cos \varphi_{i}\right)\right\}=\beta_{i}{ }^{2}\left(\Psi_{i} \sin \Phi_{i}-T_{i} \cos \Phi_{i}\right), \quad T_{i}=-\int_{s_{i}}^{8} r_{i} q_{i} d s \\
& \mu_{i} \varepsilon^{2}\left\{\left(r_{i} \Psi_{i}^{\prime}\right)^{\prime}-\frac{\beta_{i}^{2}}{r_{i}} \Psi_{i}\right\}=\cos \Phi_{i}-\cos \varphi_{i}-\mu_{i} \varepsilon^{2}\left\{\left(r_{i}^{2} p_{i}\right)^{\prime}+\right. \\
& \left(\beta_{i}^{2} \frac{\sin \Phi_{i}}{r_{i}}+v_{i} \Phi_{i}^{\prime}\right)\left(\Psi_{i} \sin \Phi_{i}-T_{i} \cos \Phi_{i}\right)+ \\
& \left.v_{i} r_{i}\left(p_{i} \cos \Phi_{i}+q_{i} \sin \Phi_{i}\right)\right\}
\end{align*}
$$

All the quantities in (4.1) are dimensionless and related to the dimensional quantities by means of the formulas

$$
\begin{aligned}
& \varepsilon^{2}=\left(\frac{h_{1} h_{2}}{a^{2} \gamma^{2}}\right)^{1 / 2}, \quad \gamma=\left(\gamma_{1} \gamma_{2}\right)^{1 / 2}, \quad \gamma_{i}^{2}=12\left(1-v_{i \theta} v_{i s}\right), \quad \beta_{i}^{2}=\frac{E_{i \theta}}{E_{i s}}=\frac{v_{i \theta}}{v_{i s}} \\
& v_{i}=v_{i \theta}, \quad r_{0 i}=r_{i} a, \quad z_{0 i}=z_{i} a, \quad \operatorname{tg} \varphi_{i}=\frac{z_{i}^{\prime}}{r_{i}^{\prime}}, \quad r_{1}(0)=r_{2}(0), \\
& z_{1}(0)=z_{2}(0)=0 \\
& \varphi_{1}(0) \neq \varphi_{2}(0), \quad \mu_{1}^{2}=\left(C_{2} C_{1}{ }^{-1}\right), \quad \mu_{2}=\mu_{1}{ }^{-1}, \quad \sigma_{1}^{2}=D_{1} D_{2}{ }^{-1}, \\
& \sigma_{2}=\sigma_{1}^{-1} \\
& C_{i}=E_{i \theta} h_{i}, \quad D_{i}=E_{i \theta} h_{i}^{3} \gamma_{i}^{-2}, \quad E^{2}=E_{1 \theta} E_{2 \theta}, \quad(\quad)^{\prime} \equiv \frac{d}{d s}(\quad) \\
& \left\{\Psi_{H i}, \Psi_{V i}, \quad p_{H i}, p_{V i}\right\}=E \gamma \varepsilon^{4}\left\{a^{2} \Psi_{i}, a^{2} T_{i}, p_{i}, q_{i}\right\} \\
& M_{i}=\frac{a M_{s i}}{D_{i}}=\left(\Phi_{i}-\varphi_{i}\right)^{\prime}+v_{i} \frac{\sin \Phi_{i}-\sin \varphi_{i}}{r_{i}} \\
& u_{i}=\frac{u_{0 i} C_{i}}{a^{2} \gamma E \varepsilon^{2}}=r_{i} \Psi_{i}^{\prime}+r_{i}{ }^{2} p_{i}-v_{i}\left\{\Psi_{i} \cos \Phi_{i}-T_{i} \sin \Phi_{i}\right\}
\end{aligned}
$$

Here $\quad z_{0 i}(s), r_{0 i}(s) \quad$ are parametric equations of the middle surface, where s is the arclength of the meridian measured from the discontinuity point $s=$ $0) ; i=1 \quad$ for $\quad s_{1} \leqslant s<0 \quad$ and $i=2$ for $\quad 0<s \leqslant s_{2} ; E_{s} E_{\theta}, v_{s}, v_{\theta}$ are the Young's moduli and Poisson's ratios, respectively, in the meridian and circumferential directions; a_{1} is the characteristic dimension, and h is the shell thickness;
$\boldsymbol{\varepsilon}^{2}$ is the relative thin-walledness parameter, and β^{2} is the coefficient of orthotropy. The remaining notation is analogous to that taken in $[6,18,19]$.
It is assumed that the shell middle surface is sufficiently smooth and strictly convex in the intervals $s_{1} \leqslant s<0$ and $0<s \leqslant s_{2}$ while the load has the form

$$
\begin{align*}
& p(\Phi(s), s)=p_{0}(\Phi(s), s)+p_{1} \delta(s), \quad q \quad(\Phi(s), s)= \tag{4.3}\\
& \quad q_{0}(\Phi(s), s)+q_{1} \delta(s)
\end{align*}
$$

The bending moment, stress, and horizontal displacement remain continuous at the discontinuity point $0=s$ and the angle between the shell elements does not change during deformation, i.e.,

$$
\begin{align*}
& \sigma_{1} M_{1}(0)=\sigma_{2} M_{2}(0), \quad \Psi_{1}(0)=\Psi_{2}(0) \tag{4.4}\\
& \mu_{1} u_{1}(0)=\mu_{2} u_{2}(0), \quad \Phi_{1}(0)-\varphi_{1}(0)=\Phi_{2}(0)-\varphi_{2}(0)
\end{align*}
$$

Finally, boundary conditions corresponding to the method of fixing the shell edge [6] should be given for $s=s_{1}$ and $s=s_{2}$.
In the case of a closed shell we have

$$
\begin{equation*}
\Phi_{i}\left(s_{i}\right)=\Psi_{i}\left(s_{i}\right)=\varphi_{i}\left(s_{i}\right)=r_{i}\left(s_{i}\right)=0, \quad i=1,2 \tag{4.5}
\end{equation*}
$$

Limiting ourselves to the construction of smooth terms of the asymptotic, we construct the solution of the problem (4.1)-(4.4) as

$$
\begin{align*}
& \Phi_{i}(s, \varepsilon) \sim \Phi_{i 0}(s)+G_{i 0}\left(t_{i}\right)+g_{i 0}^{(1)}\left(\frac{s-s_{1}}{\varepsilon}\right)+ \tag{4.6}\\
& \quad g_{i 0}^{(2)}\left(\frac{s_{2}-s}{\varepsilon}\right), \quad t_{1}=-\frac{s}{\varepsilon}>0 \\
& \Psi_{i}(s, \varepsilon) \sim \Psi_{i 0}(s)+H_{i 0}\left(t_{i}\right)+h_{i 0}^{(1)}\left(\frac{s-s_{1}}{\varepsilon}\right)+ \\
& \quad h_{i 0}^{(2)}\left(\frac{s_{2}-s}{\varepsilon}\right), \quad t_{2}=\frac{s}{\varepsilon}>0
\end{align*}
$$

The functions $\quad \Phi_{i 0}(s), \Psi_{i 0}(s) \quad$ are solutions of (4.1) to the accuracy of quantities of ε^{2} order and correspond to the membrane stress mode of equilibrium. They are determined from (4.1) for $\varepsilon=0$ and are

$$
\begin{align*}
& \Phi_{i 0}(s)=\varphi_{i}(s), \quad \varphi_{1}(0) \neq \varphi_{2}(0), \quad \Psi_{10}(0) \neq \Psi_{20}(0) \tag{4.7}\\
& \Psi_{i 0}(s)=-\operatorname{ctg} \varphi_{i}(s) \int_{s_{i}}^{s} r_{i}(\xi) q_{i}\left(\varphi_{i}(\xi), \xi\right) d \xi, \quad i=1,2
\end{align*}
$$

Therefore, the internal edge effect phenomenon holds and the boundary layer functions $G_{i 0}\left(t_{i}\right), H_{i 0}\left(t_{i}\right) \quad$ concentrated in the neighborhood of the parallel $s=0$, cancels the residuals in satisfying conditions (4.4) for $\Phi_{i 0} . \Psi_{i 0}$.
The boundary layer functions $g_{i 0}{ }^{(k)}, \quad h_{i 0}{ }^{(k)}(i, k=1,2)$ are lumped in the neighborhood of the shell edge $\left(s=s_{1}, s=s_{2}\right) \quad$ and are constructed in $[6,19]$ for different boundary condition cases. These functions should be omitted in the expansiond (4.6) upon compliance with the conditions (4.5).

Let us deduce a system of internal edge effect equations on a half-bounded line to determine $\quad G_{i 0}\left(t_{i}\right), H_{i 0}\left(t_{i}\right) \quad$ By using the change of variables

$$
\begin{align*}
\varphi_{i}^{*} & =\left|\Phi_{i 0}(0)\right|, 0<\varphi_{i}^{*}<\pi, G_{i 0}=G_{i} \operatorname{sign} \Phi_{i 0}(0), H_{i 0}=\left(\frac{\nu_{i}}{\mu_{i}}\right)^{1 / 2} \frac{H_{i}}{\beta_{i}} \tag{4.8}\\
t_{i} & =\tau_{i}\left[\frac{r_{i}(0)\left(\sigma_{i} \mu_{i}\right)^{1 / 2}}{\beta_{i} \sin \varphi_{i}^{*}}\right]^{1 / 2}, \quad T_{i 0}(0, x)= \\
& -\frac{Q_{i} \sin ^{2} \varphi_{i}^{*}}{2 \beta_{i}}\left(\frac{\sigma_{i}}{\mu_{i}}\right)^{1 / 2} \operatorname{sign} \Phi_{i 0}(0) \\
\xi_{2} & =\frac{\beta_{2} \sigma_{1}}{\beta_{1} \mu_{1}}, \quad \xi_{4}=\operatorname{sign} \frac{\Phi_{10}(0)}{\Phi_{20}(0)}, \quad \xi_{3}=\left(\frac{\sin \varphi_{1}^{*}}{\sin \varphi_{2}^{*}} \xi_{2}\right)^{1 / 2} \mu_{1}, \\
\xi_{1} & =\xi_{3} \xi_{4} \frac{\beta_{1} \sigma_{1}}{\beta_{2} \mu_{1}}
\end{align*}
$$

These equations always reduce to the same system

$$
\begin{align*}
& \sin \varphi_{i}^{*} \frac{d^{2} G_{i}}{d \tau_{i}^{2}}+\frac{1}{2} Q_{i}^{*} \sin \varphi_{i}^{*} \sin G_{i}-H_{i} \sin \left(G_{i}+\varphi_{i}^{*}\right)=0 \tag{4.9}\\
& \sin \varphi_{i}^{*} \frac{d^{2} H_{\boldsymbol{i}}}{d \tau_{i}^{2}}+\cos \varphi_{i}^{*}-\cos \left(G_{i}+\varphi_{i}^{*}\right)=0
\end{align*}
$$

with conditions for $\tau_{i}=0, \quad$ resulting from (4.4) and also conditions that G_{i}, H_{i} decrease at infinity

$$
\begin{align*}
& \xi_{1} \frac{d G_{1}(0)}{d \tau_{1}}+\frac{d G_{2}(0)}{d \tau_{2}}=0, \quad \xi_{2}\left[H_{1}(0)-\frac{1}{4} Q_{1} \sin 2 \varphi_{1}^{*}\right]- \tag{4.10}\\
& H_{2}(0)+\frac{1}{4} Q_{2} \sin 2 \varphi_{2}^{*}=r_{1} p_{1} \\
& \xi_{3} \frac{d H_{1}(0)}{d \tau_{1}}-\frac{d H_{2}(0)}{d \tau_{2}}=0, \quad \xi_{4} G_{1}(0)-G_{2}(0)=0 \\
& G_{i}(\infty)=H_{i}(\infty)=0, \quad i=1,2
\end{align*}
$$

It is convenient to set

$$
\begin{equation*}
x=Q_{2} \neq 0, \quad x=x\left(\varphi_{1}^{*}, \varphi_{2}^{*}, l, p_{1}\right), \quad l=\frac{Q_{1}}{Q_{2}} \tag{4.11}
\end{equation*}
$$

as the load parameter x.
The method of solving the problem (4.9)-(4.10) is described in Sect. 2.
5. Examples for nonshallow shells. 1° Closed isotropic shell subjected to a hydrostatic load. In this case we have

$$
\begin{align*}
& q_{i}=Q \cos \Phi_{i}(s), \quad p_{i}=-Q \sin \Phi_{i}(s), \quad \sigma_{i}=\mu_{i}=\beta_{i}=1 \tag{5.1}\\
& \varphi_{1}{ }^{*}=b_{1}, \quad \varphi_{2}{ }^{*}=\pi-b_{2}, \quad \cos \varphi_{i}(s)=r_{i}^{\prime}(s), \quad \xi_{2}=\xi_{4}=1 \\
& T_{i 0}(s)=-\frac{1}{2} Q r_{i}{ }^{2}(s), \quad Q_{i}=\frac{Q r_{i}^{2}(0)}{\sin ^{2} b_{i}}, \quad \xi_{1}=\xi_{3}=\left(\frac{\sin b_{1}}{\sin b_{2}}\right)^{1 / 2}
\end{align*}
$$

Here Q is the intensity of the external pressure, b_{1}, b_{2} are angles the shell element makes with the horizontal axis at the discontinuity point of the meridian. Passing to dimensional variables, we obtain for the asymptotic value of the critical pressure Q^{*}

$$
\begin{equation*}
Q^{*}=\frac{E h^{2}}{\sqrt{12\left(1-v^{2}\right)}} \frac{\sin b_{1} \sin b_{2}}{r_{10}{ }^{2}(0)} x^{*}\left(b_{1}, b_{2}\right) \tag{5.2}
\end{equation*}
$$

The values of $\eta=x^{*} \sin b_{1}\left(\sin b_{2}\right)^{-1}$ are here presented in Fig. 1 .

Fig. 1

Fig. 2

Numbers 1-4 refer to the values $b_{2}=0.2,0.5,0.9,1.571$ respectively. In the case of a shell consisting of spherical segments of radius $a R_{1}$ and $a R_{2}$ we have

$$
\begin{array}{r}
\varphi_{1}(s)=b_{1}+\frac{s}{R_{1}}, \quad \varphi_{2}(s)=\pi-b_{2}+\frac{s}{R_{2}}, \quad r_{i 0}(s)=a R_{i} \sin \varphi_{i}(s) \tag{5.3}\\
z_{10}(s)=a R_{1}\left[\cos b_{1}-\cos \varphi_{1}(s)\right], \quad z_{20}(s)=-a R_{2}\left[\cos b_{2}-\right. \\
\left.\cos \varphi_{2}(s)\right], \quad r_{10}(0)=r_{20}(0)
\end{array}
$$

We then deduce from (5.2)

$$
\begin{equation*}
Q^{*}=\frac{E x^{*}\left(b_{1}, b_{2}\right)}{\sqrt{12\left(1 \cdots v^{2}\right)}} \frac{h^{2}}{a^{2} R_{1} R_{2}} \tag{5.4}
\end{equation*}
$$

2°. Spherical shell subjected to hydrostatic pressure $\quad Q$ and a force P distributed uniformly along a ring. In this case the shell middle surface and the load are given in the form

$$
\begin{array}{ll}
r_{i 0}(s)=a \sin \varphi_{i}(s), \quad \varphi_{i}(s)=b+s, & \sigma_{i}=\mu_{i}=\beta_{i}=1 \\
p=-Q \sin \Phi(s)-P \sin \Phi(0) \delta(s), & q=Q \cos \Phi(s)+P \cos \Phi(0) \delta(s)
\end{array}
$$

where b is the slope of the shell element to the abscissa axis at the point of application of the concentrated force P. We obtain from (4.7), (4.8) and the last equation in (4.1)

$$
\begin{aligned}
& T_{10}(s)=-1 / 2 Q \sin ^{2} \varphi_{1}(s), \quad \Psi_{10}(s)=-1 / 4 Q \sin 2 \varphi_{1}(s), \quad s<0 \\
& T_{20}(s)=-1 / 2 Q \sin ^{2} \varphi_{2}(s)-P \sin b, \quad \Psi_{20}(s)=-1 / 4 Q \sin 2 \varphi_{2}(s)- \\
& p \cos b, \quad s>0 \\
& \Psi_{10}(0) \neq \Psi_{20}(0), \quad Q_{1}=Q, \quad Q_{2}=Q+2 P / \sin b, \quad b \neq 0
\end{aligned}
$$

Solving the problem (4.1)-(4.4), we obtain neutral curves corresponding to those values of P and Q for which local buckling occurs in the neighborhood of the line of application of the concentrated load. The critical value of the vertical component of the stress function T^{*} at the edge of a spherical shell subjected to a hydrostatic load is determined at buckling by the formula

$$
T^{*}\left(b_{0}\right)=-1 / 2 \sigma^{*}\left(b_{0}\right) \sin ^{2} b_{0}
$$

where b_{0} is the shell aperture angle, and σ^{*} is the value of the upper critical buckling load which is determined by the method of fixing the edge and is presented in $[6,19,20]$. In the case under consideration, the critical value of the vertical component of the stress function equals $T_{2} *\left(b_{0}-b\right)$ and the neutral buckling curve is determined by the equation

$$
T^{*}\left(b_{0}\right)=T_{2}^{*}\left(b_{0}-b\right) \text { or } Q=\sigma^{*}\left(b_{0}\right)-\frac{2 P \sin b}{\sin ^{2} b_{0}}
$$

The general neutral curves should consist of sections corresponding to local buckling near the edge and sections corresponding to local in the neighborhood of the line of application of the load P. For certain values of b and b_{0} in the case of a movable hinge fixed edge, these curves are presented in Fig. 2. It is seen from Fig. 2 that buckling starts in the neighborhood of the line of application of the concentrated load for

$$
b_{0}=1.38 \quad \text { and } \quad b=0.5 \quad \text { (curve 1) with } Q=1.00 \text { and } P=0.486, \text { and }
$$

near the edge with $Q=1.25$ and $P=0.252$. Curve 2 corresponds to the case

$$
b=0.2, b_{0}=0.8
$$

3°. Influence of edge fixing on the magnitude of the upper critical load for a shell in the shape of spherical segments. Using the results in [6], let us write the asymptotic value of the upper critical load for local buckling near a shell edge in dimensional form

$$
Q_{1}{ }^{*}=\frac{E \sigma^{*}(b)}{\gamma} \frac{h^{2}}{\left(a R_{2}\right)^{2}}
$$

Here $a R_{2}$ is the radius of a segment whose edge is fixed, b is the segment aperture angle at the edge, $\sigma^{*}(b)$ depends on the method of fixing the edge and is presented in $[7,19,20]$. By using (5.4) we write the ratio between the asymptotic values of the critical loads for local buckling near the shell edge and in the neighborhood of the broken line

$$
\rho=\frac{Q_{1}{ }^{*}}{Q_{2}^{*}}=\frac{\sigma^{*}(b)}{\chi^{*} \sin b_{1}\left(\sin b_{2}\right)^{-1}}=\frac{\sigma^{*}(b)}{\eta}
$$

Values of the quantity $\eta=x^{*} \sin b_{1}\left(\sin b_{2}\right)^{-1}$ are presented for convenience in Fig. 1. For $\rho>1$ buckling starts in the neighborhood of the discontinuity line and for $\rho<1-\mathrm{B}$ in the neighborhood of the shell edge. Let us note that in the case of a clamped edge or fixed-hinge support $\sigma^{*}(b)=4 \quad$ (see $[4,20]$ and $\rho>1$ always).

REFERENCES

1. Mushtari, Kh.M. and Galimov, K. Z., Nonlinear Theory of Elastic Shell. Tatknigoizdat, Kazan, 1957.
2. Srubshchik, L. S., On the loss of stability of nonsymmetric, strictly convex thin shallow shells. PMM, Vol. 37, № 1, 1973.
3. Vorovich, I. I., On the existence of solution in nonlinear shell theory. Dokl. Akad. Nauk SSSR, Vol. 117, № 2, 1957.
4. Pogorelov, A. V., Geometric Methods in the Nonlinear Theory of Elastic She1ls. "Nauka", Moscow, 1967.
5. Srubshchik, L. S., Asymptotic method of determining the critical buckling loads of shallow, strictly convex shells of revolution. PMM, Vol. 36, № 4, 1972. 6. Zhukov, M.Iu. and Srubshchik, L. S., On the asymptotic value of the upper critical pressure of nonshallow spherical shells. PMM, Vol. 38, № 4, 1974. 7. Zhukov, M.Iu. and Srubshchik, L. S. On the question of the buckling of the membrane state of stress of shells. Transactions, Ninth All-Union Conference on the Theory of Shells and Plates, pp. 121-3, Sudostroenie, Leningrad, 1975.
6. Vorovich, I.I. and Srubshchik, L. S., Asymptotic analysis of the general equations of nonlinear shallow shell theory. Transactions, Seventh All-Union Conference on the Theory of Shells and Plates, pp. 156-9, "Nauka", Moscow, 1970. 9. Haber, S. and Levinson, N., A boundary value problem for a singular perturbed differential equation. Proc. Amer. Math. Soc. , Vol. 6, 1955, pp. 866-72.
7. Vishik, M. I. and Liusternik, L. A., Regular degeneration and boundary layer for linear differential equations with a small parameter, Usp. Matem. Nauk, Vol. 12, № 5, 1957.
11.Isakova, E. K., Asymptotics of the solution of a second order partial differential equation of parabolic type with a small parameter in the highest derivative. Dokl. Akad, Nauk SSSR, Vol, 117, № 6, 1957.
8. Vastl'eva, A.B., Uniform approximation to the solution of a system differential equations with a small parameter in the derivative and application to boundary value problems. Dokl. Akad. Nauk SSSR, Vol. 124, № 3, 1959.
9. Tupchiev, V.A., On angular solutions of boundary value problems with a small parameter in the derivatives in a system of first order equations. Vestnik Moscow Univ., Ser. Matem., Mekhan., № 3, 1963.
10. Srubshchik, L. S. and Iudovich, V.I., Asymptotics of weak fluid flow discontinuities with vanishing viscosity. Dokl. Akad. Nauk SSSR, Vol. 199, № 3, 1971. 15. Batishchev, V.A. and Srubshchik, L. S., Diffusion of a spherical Hill vortex with vanishing viscosity. Dokl. Akad. Nauk SSSR, Vol. 197, № 5, 1971. 16. Korn, G. and Korn, T., Handbook on Mathematics for Scientific Workers and Engineers. "Nauka", Moscow, 1974, p. 767.
11. Reissner, E., On axisymmetrical deformation of thin shells of revolution. Proc. Sympos.Appl. Math., Vol. 3, 1950, pp. 27-52.
12. Srubshchik, L. S. , Asymptotics of the Reissner equation in the nonlinear theory of symmetrically loaded shells of revolution. Dokl. Akad. Nauk SSSR, Vol. 182, № 2 , 1968.
13. Zhukov, M. Iu., On the upper critical load of thin nonshallow strictly convex shells of revolution. Izv. Sev.-Kavkaz. Nauch. Tsentra Vyssh. Shkoly. Estestv. Nauk, №1, 1976.
'0, Zhukov, M. Iu., Larchenko, V. V., Mel'nik, V. V., Srubshchik, L.S. and Tsariuk, L. B., Edge effects and buckling of thin nonshallow spherical shells. Transactions, Ninth All-Union Conference on Shells and Plates, pp. 11921, Sudostroenie, Leningrad, 1975.
